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A Hartree-Fock-Roothaan analogon using the 
principle of variance minimization 

1. A Roothaan-like equation minimizing variance 

Gerhard Pauli and Heinz Kleindienst 

Institut fiir Physikalische Chemie I der Universitiit Dfisseldorf, Universit~itsstr. 1, 
D-4000 Diisseldorf 1, Federal Republic of Germany 

The variance expression I I H ~ -  A* �9 ~]l 2, which gives an upper bound for the 
distance between the real number A* and the spectrum of the Schr6dinger 
operator  H, is computed for a closed-shell Slater determinant ,t~. A Roothaan- 
like matrix equation is deduced for the determination of variance-minimizing 
orbitals. 
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1. Introduction 

Variance Minimization [1, 2] has been shown to provide good lower bounds for 
the lower eigenvalues of ~He [3,4],  4He [5], and some other three-particle 
systems [6]. The procedure does not yield absolute lower bounds, but rather an 
interval enclosing at least one eigenvalue; on the other hand it has the advantages 
of a variational procedure, where basis functions may be chosen arbitrarily. 

It seems desirable to extend this method to many-particle systems, with the 
wavefunction expressed in terms of Slater determinants. In this paper, as one 
step towards this goal, the variance expression, [ I / - /~-  &* �9 ~[I, will be computed 
for �9 as a single closed-shell Slater determinant. Minimization of this expression 
with respect to a given basis will lead to a matrix equation similar to the Roothaan 
equation, but yielding variance-minimizing rather than energy-minimizing 
orbitals. 
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2. IIH~II z for Slater determinants 

The distance between an arbitrary real number X* (e.g. a Ritz or Hartree-Fock 
value) and the spectrum o- of the Schr6dinger operator H may be estimated by 

inf IX-x*l 2--- I I H + - ) t * "  ' 11 =, 
a ~ ( O )  

where �9 may be any normalized function in the domain of H. Thus the first step 
of Variance Minimization consists in minimizing I I H ~ - x *  �9 +11 = with respect to 
a given X* by varying ~ .  

Since, for a normalized V, 

IIH~ - X *. ~t'l[ 2 -- (HWIH~) - 2X *(HW]~t') + X'z, 

we see that, in order to calculate I I H ~ - x *  �9 +112 for a Slater determinant, we 
have to express not only the energy value (H~I ' t ' ) ,  but also ( H ~ I H ~ )  = IIH~II 2 
as a functional of the occupied orbitals. 

As in the Hartree-Fock calculation of (H~{~)  (see, e.g. [7]) we start decomposing 
H into a sum of one- and two-electron operators. 

For the considered closed-shell atomic system of 2n electrons and nuclear charge 
Z, 

H = H ~ + H 2  

with 
2n Z 

H1 E H~. Hp 1 2 _ _  = = - ~ V p -  
p=l rp 

1 
H z = E E  - .  

p<q rpq 

In this way, ( H ~ I H ~ )  decomposes into 

(HIWI/-/1 qt ) + 2(//~ ~H2",t t) + (He~IH2~) 
(~ )  ( 8 )  (~) 

where 
2n 2n 

( H , ~ I H I + )  = E E <HprP]Hq v)  = 2n. E (H,~FIHq+) 
p,q=l q=l  

= 2n.  (Hl"ItlHlat t) (M1) 

+ 2n (2n - 1). (H1WIH2~) (M2); 

(H?ttlH=+) = ~ E E Hp+ = 2n . E Y. H1 xlt 1 + 
p=l  q<s q<s 

= 2 n ( 2 n - 1 ) . ( H l * l  l--~-q t )  (81)  
! r12 / 

1 ( 1 ~ 
+ - .  2 n ( 2 n - 1 ) ( 2 n - 2 ) .  Hla,t r air (82) ;  

2 23 1 
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(H2~[H~_~)=Er, Y.Y.(lq' lxI')=�89 
p<q  s<t \rm Irst s<, 

=�89 ) 

+ 2n(2n-1)(2n-2)'(l ~ [ l  q ') (g2)  
\r12 I r23 

+�88 2n(2n--1)(2n--1)(2n--2)(2n--3)" ~z -~434" (%~ 

On inserting for �9 a normalized Slater determinant, 

1 
4(--~n).~" ~ p~" P,~{~la(1)~,8(2)~2~(3)  �9 �9 �9 qsd3(2n)} , 

- 1  for odd permutations P .  and 

P~'= +1 for even ones, 

( H ~ I H ~ )  decomposes into a double sum over the permutations: 

1 
(H~[H+) = (2n)! " ~ ~ P~P~" (HPg{~bla... 4&fl}lHP~{6la... ~Od3}), 

and so do all the summands M l - ~ 3 .  

In each of these double sums, in the same way as in the Har t ree-Fock calculation 
of (H~I~F), terms will vanish on account of the orthogonality of the spinorbitals. 
They vanish if P~, and P ,  assign different orbitals to an electron which, in this 
very term, is not affected by an operator,  or if P~ and Pv assign different spins 
to any electron. 

This means that, in each of the summands ~ /1 -~3 ,  P~ and P~ may differ only 
by a permutation of those electrons affected by an operator�9 In case thev differ 
by any such permutation at all, the "permuted"  electrons must have the same spin. 

In M1, the permutations P~ and Pv have to be the same: 

M1 = 2 n ' -  
1 

(2n)! 
�9 E (H1P~{010z' '"  4-'~3}IH, P~.{Ola~ " " " 4'nf})- 

p. 

The ( 2 n - 1 ) I  permutations assigning the same spinorbital q, io'~ to electron 1 all 
lead to the same value, thus making up for the normalization factor. The 
summands in which electron 1 is assigned $ic~ and q'ifl are equal; so 

agl = 2  i=1 ~ f IH10i(1)[2 drl. 
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Let us introduce the following inner product notation for integrals over the 
coordinates of one or more electrons: 

Each orbital q'i will be represented by its index i, the LCAO basis functions ~bil 
in the next chapter by an index il; thus an integral 

f qTi(1)0j(2) . . . .  AqJk(1)01(2) �9 �9 �9 dT~ d r 2 . . "  

will be written 

( i j .  . . I A k l "  . ) 

or, if the operator  A is symmetric, 

( i j .  . . I e l k l "  " " ). 

Operators signed by an index 1, 2 . . . .  are meant to act upon the first, second . . . .  
electron of the product in which they are written. Thus an integral 

f ~(3)~j(4)  �9 0k(3)0,(4) dr3 dr4 
•  
r34 

will be abbreviated as 

( i j l l l k l ) .  

Variation will be indicated by a circumflex; e.g. 

(if[ l lkl)  
r l  2 

will denote a Coulomb-type product involving a variation of the orbital q~j(2). 

In this notation, our first summand is 

~ / 1 = 2  ~ ( i lS2 l i ) .  
i=1 

In ~/2, Yd2, and ~1,  P .  and P~ may be the same, or differ by the permutation 
(12). If P .  = P~, there are 4 possible spin combinations if the electrons 1 and 2 
are assigned different orbitals q'i ~ 0j, or 2 spin combinations if they are assigned 
the same orbital 0i. In case P~ = (12) �9 P . ,  electrons 1 and 2 must have the same 
spin (2 possibilities) and different orbitals; these "exchange-type" terms enter 
with negative sign since p . -  p~ = - 1. 

There are ( 2 n - 2 ) !  permutations assigning to the electrons 1 and 2 the same 
combination of spinorbitals (thus the normalization factor cancels out again): 

sg2 = 4 ~ ~. ( i l H  I i) . ( j IHI j )+  2 F. (i[HI i) 2 -  2 ~. Y~ ( i lHl j )  2 
i~:j i i~-j 

= ~Y~ ( 4 ( i l H l i ) .  ( j I H I j ) - 2 ( i l H l j ) 2 ) ;  
i , j= l  
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(H1/r12) here means: apply the one-electron hamiltonian H on the first orbital, 
then divide by r12); 

~ I = Z Z  2 - i . 
i,j= 1 

In ~ 2  and ~2,  P~, and P~ may 

* be the same 
giving at most 8 spin combinations, with p ,  �9 p~ = + 1 or 
* differ by an interchange (12), (13), or (23) 
giving at most 4 spin combinations, with p~,. p~ = - 1 or 
* differ by (123) or (132) 
giving 2 spin combinations (provided all 0 are different) with p~.. p~ = + 1. 

Note that the three interchanges (12), (13), and (23) do not give the same results; 
for example, in 

I re3 / 

(12) and (13) are equivalent, while (23) will give a different result. 

Noting well the reduction of possible spin combinations in case two orbitals are 
equal, we find 

g32 = Y, ~ Z 4( i lnl i )  . ( j k l l l j k ) - 4 ( i l g l j )  . ( j k l l l i k )  
i , j , k=l  r12 r12 

-2( i lH[i)"  ( j k l l ] k j ) +  2(ilHlj)" ( j k [ l [k i )  

and 

n 
cr Y~ Y~ 8(/jkl ---1. l [ / j k ) -  8 (qk[ 1 .  1--[jik) 

i,j,k = 1 rl  2 ]'23 El 2 F23 

- 4  (ijk[ 1-~--. 1--Ikfi)+4 (ijk[ 1--. l~lkij). 
l'12 F23 r12 r23 

In ~3,  the last summand of IIn,~,ll 2, e~ and P .  may differ by any of the 24 
possible permutations of electrons 1-4: 

~3 = }~ Y~ Y~ 2 4 ( ij, 1--, ij). ( kl, 1--~-, kl) - 4 ( ijt Iji)" ( kl, 1--,I I kl) 
i , j ,k , l=l El2 1'12 r12 

- 8 (ijll~[kj) �9 (kl[1-~-il)+ 8 (ijll--~-Iki) �9 (kl[l~ljl) 
r12 1"12 r12 r12 
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+( iJl~12lJi)'( kllr~2 ] l k )+2  (ijl-~121 kl) 2 

- 2 (/jill ki}. (k11---1 Irl2/J) - -  (ijlllrlz kl}. (klll-2-lji}.r,2 

3. Minimization of IJHq~-A * .  ~ f l l  2 

Combining the results s~ 1-qr with the familiar Hart ree-Fock energy expression, 
we get the variance expression for a closed-shell Slater determinant,  

Fz('I ' ;  X*) = IIH~II = -  2A*. <H,I,I,I,> + A ,2 

" 1 (k l l l l  =Y, E E  Y 4(i/I liY). kl) 
i,Lk, l= l  /12 

- 4  ( i j l~l j i )  " (kl[~lkl) 

- 8 ( i j l l l  kj).  (kt l l l  il) + 8 (ijl---11 ki).  (klllljl) 
F12 /12 r12 

+ (ijlllji)" (k/l--1 Ira2 Ik) + 2 (ijlllr12 kl)2 

- 2 ( i j l l l  ki). ( k l l l l  lj) - ( i j l l l  kl). (klll---lji) 
r12 r12 /12 

+ Y~ ~ Y 8 (iykl 1 .  l l i j k ) -  8 (ijkl 1 .  l l j i k )  
i , j ,k=l  r12 /23 r12 /23 

- 4  (ijk[ 1 "  l l k j i )+  4 (/jkl 1 "  l i k / J )  
r12 /23 /12 r23 

+ 8(ilHli)- (jkll[jk) 

-8( i lg l j ) .  (jkl l lik)-4(ilgli) �9 (jkl l lkj) 
r12 

+ 4{ilHlj)" (jkll--[ ki) 
r12 

1 1 
+ Y~ Y. 2 (ijl_-7-lij)-(ijl_~-lji) 

i,j= 1 / ' 1 2 / ' 1 2  

+ 8 (I-I1 ql q) -  4 ( H1 qlji) + 4(ilHli)" (jlHIj} 
/12 /12 
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-2(ilH]j)2-4A *. (ijll]ij)+ 2A * �9 (ijlllji) 
r12 

+ ~ 2(ilHali)-4A *. (i]H]i)+A .2. i=1 

This has to be minimized by varying the orbitals ~b, with the constraints that the 
orbitals stay orthonormal. 

As in the Hartree-Fock procedure, the constraints are introduced by means of 
Lagrange multipliers [8]; let us call them -2Xq. We get an auxiliary functional 

d~ = F 2 -  2 Z ~. Xq" (( i ] j ) -  6q) (6ij: Kronecker delta) 
t 1 

to be minimized without constraints. 

On the same reasons as in Hart ree-Fock calculation, we may choose the orbitals 
such that the Xq vanish for i # j. 

For the following calculations, let us assume that all inner products are real--as 
it is the case for atomic systems if we use orbitals composed of spherical harmonics 
and real-valued functions. 

The variation c~ of the auxiliary functional is formed by varying, one after the 
other, each orbital ~bi, Oj . . . .  in each of the products: 

�9 =~ ~,~}~4( ~j,llr12 ij).( k/[~12 ] k / )+4  (~j] l]  ij).( kl] 1 , k,) 

+ 4 (/Jl!l i j). ( k t l ! l  kZ) + . . .  r12 1"12 
and renaming the sums in such a way that the orbital which is being varied is 
given the index i. 

Note that, different from the corresponding Hart ree-Fock calculations, variation 
of different orbitals in the same partial sum does not always lead to equal results; 
e.g. 

~k~ Z (t'J]~12[Ji)" (kll lJ-[ # Z ~ijkt y y" (ijlllji)'r12 (kl[llkl)'r12 

In terms involving Ha/r12, we must further be aware that this operator is not 
symmetric (only (141 + H z ) / r l 2  will be); for example, 

( H1 A ) ( HI I A ) ~ i j  #- ~12q ij . 

The condition that c~ has to be zero for any variation ~t of any orbital 0i leads 
to a Hartree-Fock-l ike equation 

O~bi = Xi " I]1i 



476 G. Pauli and H. Kleindienst 

with the one-electron operator  Q itself depending on the occupied orbitals ~ in 
a similar (though more complicated) way as the Fock operator  F in the Har t r ee -  
Fock equation. 

4. Linear ansatz of the orbitals  

By an ansatz of the orbitals as linear combinations of m basis functions ~b~,, 

g,~ = E c,,~, . ~ , ,  
i1=1 

the functional [ [ H ' t r  xI*[[ 2 becomes an ordinary function of the coefficient 
vectors c~, and minimization leads to a Roothaan-l ike matrix equation 

Oci = X," Sci, 

where S is the overlap matrix with the element 

Sil , i  2 = (Jill2) 

and the element of Q is 

Qi1,i2 = 0 ! 1 )  + 0 ( 2 )  q- 0 ( 3 )  + 0(4) .  "r ,12 "~ i1~i2 --  ":il,i2 ll,12 

with 

QI~,{2 = (illH21 i 2 )  - -  2 1 " .  (illHI i2), 

O ( 2 ' ~ P f l , f  2 il,i 2 
]1=1 f2=l 

1 1 1 H I ( ilj1}~121 i2J2)--2(i'J']-~121j2i2)+ (-~12 iljl ' i2f2) 

1 ~-ilfl[f2i2)-- ' 1 (il'l -'~112f2'2) 

+ 2(illHli2)" q, IHIj2)- (i,IHlj2}" (jddl i2) 

- 2 a * .  (i,jll-~21iej2)+A*" (i'jlll--[J2i2}'r12 
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il  ,i2 ~ 
j 1 , k l = l  j2,k2= 1 

2(iljakal 1~-" 1_l_]i2j2k2 ) 
rl 2 r23 

- ( i d x  k~ l~1"r12 1]J2r23 i2 k2) - (iljl k1]l-.r12 r~3 ] i2 kgk) 

-(iljlkll~12 " ~[kaJ2i2) 

+�89 lk,[ 1 .r12 r@31 k2i2j2) 

+ �89 kx[1 1 1 �9 �9 1-~-]j2iak2) 
r12 /'23 r12 r23 

- (j, i, k I [_.1_1. Z ]  i2 h k2 ) 
r12 /'23 

-- � 89  1_1[ k2izj2) 
r12 ]'23 

+�89 

- (i, ]H[j2). (J, ka ]r-~2 [ i 2 k25 

-- �89 il I H[ i2)" (jl kll~l kaJ2} 

+�89 (jlk~l~lk2J2) 

+ 2(ilj~]r~ 2] i2j2)" (kllH] k2) 

-(i~j~l l-~-lkaj2) �9 (kalHli2)-(iajl] l-~--[i2k2) �9 (k,JHlJ2) 
r12 r12 

- (ilJll rl~lj2i2)" { kllH!k2) 

-k l(ilJ11~-121hk2} " (k,IHli2) 

+ �89 k2i2)" (kllH[j2), 

477 
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and 
m 

"r '2,'20!4)" = Z ~ Z E 2 Z P J . h "  Pk,.k2" Pt,.l 2 
jl ,kbll = l j2,k2,12= l 

( i l j l l l [  i2J2) " (k111111 k212} 
r12 r12 

- �89 Illk i2)" ( k111111 k212} 
r12 l'12 

-�89 (kllll l-~-l12k2}-(ilj'[1-~-[k21z)'r12 r12 (kll'[1----[iz12)r12 

- ( i l j l l l [  i2k2) �9 (kl lll![j212) 
F12 /'12 

+ �89 i111111 k2j2} �9 ( k111 Illj2/2} 
r12 r12 

+ �89 jl i ~  I 1  j2 k2}" ( k l I, [!l i 2/2} 
r12 r12 

+ �89 k2J2}" (k111[1-~-112i2) 
/'12 r12 

+ �89 I l l  i2 k2)" ( k l l, Ill Id2> 
r12 r12 

+ ~4(idllllj2i2) �9 ( k l l d l ]  12k2} 
t12 r12 

+ � 8 9  k f l : ) .  (k l /1[  l-I i2j2) 
1"12 r12 

- l ( i l j ,  l l lkz i : )  . (klll[lll2j2) 
r12 r12 

- �88 iaj, Il l jz  kg .  ( k, I, I1ir,2 12 i2) 

-�88 idllllkzlz) " ( k' lll l-~-[Jziz}'r~2 

where Ph,i2 is the element of the usual density matrix, 

P/1,i 2 = ~ 2Ci, il �9 Ci,i2 , 
i=1 

with ci, h the ilth component of the coefficient vector ci (i.e. the ilth LCAO 
coefficient of orbital ~).  
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The  eigenvalues X~ are 

X i = ( i l O l i )  = ~ ci, i,ci.i2 " (0!4). _!_0!3) +/-3(2) + O ( t )  \ "~ 11~12 - -  " ~ I i , l  2 I ~ i l , i  2 i l , i2 /~  
it , i2= 1 

whereas  the F 2 value of the Slater de te rminan t ,  by compar ing  the formulae  for 
0 and  F 2, turns  out  to be 

f e =  2 f ~5~ C i i  I C i i 2 ( I ~ ) ~ 4 1 2  "d'- 1r  . + _ 1 / ~ ( 2 )  -1-- t " l ( 1 )  ' . a -  I, * 2  
, , , r 3 ~ i l , i  2 2 k ~ f i l , i 2 - - ~ , , ~ i l , i 2  ] l t ~  

i = 1  i l , i 2 = l  

~ Pil,i z ~ , 4 ~ i l , i  2 3 ~ i l , i  2 2 ~ i l , i  2 ".,: i l , i  2 , 
= . { 1 / 3 ( 4 )  + 1 / ' - 1 ( 3 )  _ t _ l / - I ( Z )  _ t _ O ( 1 ) ) . q _ / ~ * 2  

i1, i2=1 

In  a subsequen t  paper,  the i tera t ion procedure  arising from the equa t ion  deduced 

here will be discussed and  tested by applicat ion on some simple atomic systems. 
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